cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271742 Decimal expansion of Hardy-Littlewood constant C_7 = Product_{p prime > 7} 1/(1-1/p)^7 (1-7/p).

Original entry on oeis.org

3, 6, 9, 4, 3, 7, 5, 1, 0, 3, 8, 6, 4, 9, 8, 6, 8, 9, 3, 2, 3, 1, 9, 0, 7, 4, 9, 8, 7, 6, 7, 5, 0, 7, 7, 7, 0, 5, 5, 3, 7, 2, 9, 1, 3, 8, 9, 3, 0, 3, 1, 8, 2, 5, 2, 9, 1, 0, 1, 2, 3, 0, 2, 9, 0, 7, 7, 3, 9, 2, 9, 9, 5, 7, 3, 9, 1, 7, 7, 7, 8, 4, 2, 8, 2, 7, 6, 8, 3, 3, 5, 0, 0, 0, 6, 9, 3, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.3694375103864986893231907498767507770553729138930318252910123...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1100; digits = 99; terms = 1000; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n; LR = Join[{0, 0}, LinearRecurrence[ {8, -7}, {-42, -336}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[ r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^7*(1-7/p), 1, 11) \\ Amiram Eldar, Mar 11 2021