This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271747 #9 Jan 04 2018 17:29:01 %S A271747 1754,5649,20085,77133,315597,1362669,6164685,29058813,142084077, %T A271747 717966669,3737612685,19991467293,109605434157,614681711469, %U A271747 3519553748685,20540447808573,121996580169837,736352527581069,4510823754140685,28011087761890653,176122939449075117 %N A271747 Number of set partitions of [n] such that 8 is the largest element of the last block. %H A271747 Alois P. Heinz, <a href="/A271747/b271747.txt">Table of n, a(n) for n = 8..1000</a> %H A271747 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %H A271747 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (28,-322,1960,-6769,13132,-13068,5040). %F A271747 G.f.: x^8 *(5040*x^7 -3145476*x^6 +6799268*x^5 -5424029*x^4 +2104109*x^3 -426701*x^2 +43463*x -1754)/Product_{j=1..7} (j*x-1). %F A271747 From _Colin Barker_, Jan 04 2018: (Start) %F A271747 a(n) = 64 + 91*2^(n-6) + 245*2^(2*n-15) + 11*2^(n-7)*3^(n-8) + 217*3^(n-7) + 161*5^(n-8) + 7^(n-8) for n>8. %F A271747 a(n) = 28*a(n-1) - 322*a(n-2) + 1960*a(n-3) - 6769*a(n-4) + 13132*a(n-5) - 13068*a(n-6) + 5040*a(n-7) for n>15. %F A271747 (End) %o A271747 (PARI) Vec(x^8*(1754 - 43463*x + 426701*x^2 - 2104109*x^3 + 5424029*x^4 - 6799268*x^5 + 3145476*x^6 - 5040*x^7) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)) + O(x^40)) \\ _Colin Barker_, Jan 04 2018 %Y A271747 Column k=8 of A271466. %K A271747 nonn,easy %O A271747 8,1 %A A271747 _Alois P. Heinz_, Apr 13 2016