This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271764 #8 May 15 2018 06:41:28 %S A271764 1,0,0,0,105,0,0,0,67375,135135,1261260,675675,50925875,97847750, %T A271764 703993290,6215737710,228687298476,58017429575,11262925616250, %U A271764 72813288304295,2841531210935725,11311740884766630,252469888906590355,2207276997956560530,28579415631325499655 %N A271764 Number of set partitions of [n] with minimal block length multiplicity equal to four. %H A271764 Alois P. Heinz, <a href="/A271764/b271764.txt">Table of n, a(n) for n = 4..577</a> %H A271764 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A271764 a(n) = A271424(n,4). %p A271764 with(combinat): %p A271764 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A271764 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) %p A271764 *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) %p A271764 end: %p A271764 a:= n-> b(n$2, 4)-b(n$2, 5): %p A271764 seq(a(n), n=4..30); %t A271764 multinomial[n_, k_List] := n!/Times @@ (k!); %t A271764 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; %t A271764 a[n_] := b[n, n, 4] - b[n, n, 5]; %t A271764 Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, May 15 2018, after _Alois P. Heinz_ *) %Y A271764 Column k=4 of A271424. %K A271764 nonn %O A271764 4,5 %A A271764 _Alois P. Heinz_, Apr 13 2016