This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271767 #8 May 15 2018 06:41:46 %S A271767 1,0,0,0,0,0,0,135135,0,0,0,0,0,0,51925673800,43212118950, %T A271767 607370338575,265034329560,17166996346500,1305093289500, %U A271767 584129638842750,56071685084790375,176898040019801100,518112685551586125,26529011711988035250,4672320885518286000 %N A271767 Number of set partitions of [n] with minimal block length multiplicity equal to seven. %H A271767 Alois P. Heinz, <a href="/A271767/b271767.txt">Table of n, a(n) for n = 7..577</a> %H A271767 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A271767 a(n) = A271424(n,7): %p A271767 with(combinat): %p A271767 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A271767 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) %p A271767 *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) %p A271767 end: %p A271767 a:= n-> b(n$2, 7)-b(n$2, 8): %p A271767 seq(a(n), n=7..35); %t A271767 multinomial[n_, k_List] := n!/Times @@ (k!); %t A271767 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; %t A271767 a[n_] := b[n, n, 7] - b[n, n, 8]; %t A271767 Table[a[n], {n, 7, 35}] (* _Jean-François Alcover_, May 15 2018, after _Alois P. Heinz_ *) %Y A271767 Column k=7 of A271424. %K A271767 nonn %O A271767 7,8 %A A271767 _Alois P. Heinz_, Apr 13 2016