This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271770 #8 May 15 2018 06:41:09 %S A271770 1,0,0,0,0,0,0,0,0,0,654729075,0,0,0,0,0,0,0,0,0,1228555090548911125, %T A271770 55437426478058625,1034831960923761000,375268733082243000, %U A271770 42378561928787584500,2126522820799377000,2014348742002209863250,10413707343032243250 %N A271770 Number of set partitions of [n] with minimal block length multiplicity equal to ten. %H A271770 Alois P. Heinz, <a href="/A271770/b271770.txt">Table of n, a(n) for n = 10..578</a> %H A271770 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A271770 a(n) = A271424(n,10). %p A271770 with(combinat): %p A271770 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A271770 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) %p A271770 *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) %p A271770 end: %p A271770 a:= n-> b(n$2, 10)-b(n$2, 11): %p A271770 seq(a(n), n=10..40); %t A271770 multinomial[n_, k_List] := n!/Times @@ (k!); %t A271770 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; %t A271770 a[n_] := b[n, n, 10] - b[n, n, 11]; %t A271770 Table[a[n], {n, 10, 40}] (* _Jean-François Alcover_, May 15 2018, after _Alois P. Heinz_ *) %Y A271770 Column k=10 of A271424. %K A271770 nonn %O A271770 10,11 %A A271770 _Alois P. Heinz_, Apr 13 2016