A271780 Decimal expansion of Product_{p odd prime} 1-2/(p*(p-1)), a constant related to Artin's conjecture in the context of quadratic fields.
5, 3, 5, 1, 0, 7, 0, 1, 2, 6, 1, 6, 6, 3, 8, 7, 3, 3, 2, 8, 3, 9, 5, 8, 6, 5, 1, 8, 6, 0, 6, 3, 2, 1, 5, 9, 8, 5, 8, 6, 3, 9, 3, 3, 9, 1, 0, 2, 8, 0, 1, 3, 4, 9, 2, 6, 6, 5, 2, 7, 2, 8, 8, 4, 8, 8, 9, 8, 2, 4, 3, 8, 8, 2, 1, 0, 0, 2, 6, 9, 0, 3, 5, 6, 1, 4, 4, 2, 0, 9, 2, 5, 2, 1, 5, 9, 4, 6, 2
Offset: 0
Examples
0.5351070126166387332839586518606321598586393391028...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.
Programs
-
Mathematica
digits = 99; $MaxExtraPrecision = 600; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, 1, -2}, {0, 4, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] (PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 600] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
-
PARI
prodeulerrat(1-2/(p*(p-1)), 1, 3) \\ Amiram Eldar, Mar 11 2021
Formula
Equals (8/Pi^2)*A005597.