A271798 Decimal expansion of Matthews' constant C_2, an analog of Artin's constant for primitive roots.
1, 4, 7, 3, 4, 9, 4, 0, 0, 0, 0, 2, 0, 0, 1, 4, 5, 8, 0, 7, 6, 8, 0, 8, 4, 3, 1, 8, 4, 7, 6, 9, 2, 5, 9, 6, 3, 9, 6, 6, 7, 1, 8, 5, 8, 1, 7, 3, 2, 7, 2, 1, 5, 8, 4, 4, 2, 0, 7, 9, 6, 1, 9, 2, 8, 5, 5, 5, 8, 3, 5, 3, 4, 0, 9, 8, 5, 5, 0, 3, 5, 5, 9, 8, 0, 7, 8, 2, 7, 1, 1, 3, 0, 1, 7, 6, 6, 1, 8, 9, 9, 4, 4, 3, 3, 6
Offset: 0
Examples
0.147349400002001458076808431847692596396671858173272158442...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.
Links
- K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta arithmetica, Vol. 29, No. 2 (1976), pp. 113-146.
Crossrefs
Cf. A005596.
Programs
-
Mathematica
digits = 66; m0 = 1000; dm = 100; Clear[s]; r[n_] := RootSum[1 - 2*# - #^2 + #^3& , #^n&] - 1; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m]][[1]]
-
PARI
prodeulerrat(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) \\ Amiram Eldar, Mar 16 2021
Formula
C_2 = Product_{p prime} 1 - (p^2 - (p - 1)^2)/(p^2*(p - 1)).
Log(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) + O(p,Infinity)^m = Sum_{n=2..m} -r(n)/(n*p^n), where r(n) = rootSum(1 - 2*x - x^2 + x^3, x^n) - 1.
Extensions
More digits from Vaclav Kotesovec, Jun 19 2020