cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271798 Decimal expansion of Matthews' constant C_2, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

1, 4, 7, 3, 4, 9, 4, 0, 0, 0, 0, 2, 0, 0, 1, 4, 5, 8, 0, 7, 6, 8, 0, 8, 4, 3, 1, 8, 4, 7, 6, 9, 2, 5, 9, 6, 3, 9, 6, 6, 7, 1, 8, 5, 8, 1, 7, 3, 2, 7, 2, 1, 5, 8, 4, 4, 2, 0, 7, 9, 6, 1, 9, 2, 8, 5, 5, 5, 8, 3, 5, 3, 4, 0, 9, 8, 5, 5, 0, 3, 5, 5, 9, 8, 0, 7, 8, 2, 7, 1, 1, 3, 0, 1, 7, 6, 6, 1, 8, 9, 9, 4, 4, 3, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 14 2016

Keywords

Examples

			0.147349400002001458076808431847692596396671858173272158442...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Cf. A005596.

Programs

  • Mathematica
    digits = 66; m0 = 1000; dm = 100; Clear[s]; r[n_] := RootSum[1 - 2*# - #^2 + #^3& , #^n&] - 1; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m]][[1]]
  • PARI
    prodeulerrat(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_2 = Product_{p prime} 1 - (p^2 - (p - 1)^2)/(p^2*(p - 1)).
Log(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) + O(p,Infinity)^m = Sum_{n=2..m} -r(n)/(n*p^n), where r(n) = rootSum(1 - 2*x - x^2 + x^3, x^n) - 1.

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020