This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271818 #13 Feb 16 2025 08:33:33 %S A271818 33164857769,33164857771,33164857777,33164857787,33164857801, %T A271818 33164857819,33164857841,33164857867,33164857897,33164857931, %U A271818 33164857969,33164858011,33164858347,33164858569,33164858737,33164859019,33164859569,33164859691,33164859817,33164860219,33164860507,33164862769,33164863177,33164864731,33164864969,33164865457,33164865961,33164866481,33164868427,33164869321 %N A271818 Primes of the form 33164857769 + 2*n^2. %C A271818 The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348 and A165234. %H A271818 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-generating Polynomial</a> %e A271818 For n=0, we get 33164857769, which is a prime as determined in A271348. %e A271818 For n=1, we get 33164857769 + 2*1^2 = 33164857771, which is a prime as determined in A271348. %t A271818 Select[Table[33164857769+2*n^2, {n, 0, 100}], PrimeQ] %o A271818 (PARI) for(n=0, 100, isprime(33164857769+2*n^2) && print1(33164857769+2*n^2, ", ")) %Y A271818 Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271366, A271819, A271820 (similar sequences whose first term is in A271348). %K A271818 nonn %O A271818 1,1 %A A271818 _Waldemar Puszkarz_, Apr 14 2016