A271821 Numbers k such that (5*10^k - 143)/3 is prime.
3, 4, 5, 6, 10, 23, 30, 33, 64, 189, 207, 213, 463, 547, 1225, 1795, 3726, 3947, 4989, 5226, 9825, 11489, 12666, 14512, 19588, 28795, 29903, 31889, 71357
Offset: 1
Examples
4 is in this sequence because (5*10^4-143)/3 = 16619 is prime. Initial terms and associated primes: a(1) = 3, 1619; a(2) = 4, 16619; a(3) = 5, 166619; a(4) = 6, 1666619; a(5) = 10, 16666666619, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 16w19.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(5*10^#-143)/3] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((5*10^n-143)/3), print1(n, ", "))); \\ Altug Alkan, Apr 14 2016
Comments