This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271828 #36 Sep 08 2022 08:46:16 %S A271828 1,2,15,64,173,366,667,1100,1689,2458,3431,4632,6085,7814,9843,12196, %T A271828 14897,17970,21439,25328,29661,34462,39755,45564,51913,58826,66327, %U A271828 74440,83189,92598,102691,113492,125025,137314,150383,164256,178957,194510,210939,228268,246521,265722 %N A271828 a(n) = 4*n^3 - 18*n^2 + 27*n - 12. %C A271828 This sequence lists all positive integers n such that 2*n - 3 is a cube. Only for first term 2*n - 3 generates a negative cube that is -1. - _Altug Alkan_, Apr 15 2016 %H A271828 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1). %F A271828 a(n+1) = A050492(n)+1. %F A271828 G.f.: x*(1 - 2*x + 13*x^2 + 12*x^3)/(1 - x)^4. - _Ilya Gutkovskiy_, Apr 15 2016 %t A271828 Table[((2 n - 1)^3 + 3)/2, {n, 0, 41}] (* or *) %t A271828 Rest@ CoefficientList[Series[x (1 - 2 x + 13 x^2 + 12 x^3)/(1 - x)^4, {x, 0, 42}], x] (* _Michael De Vlieger_, Apr 16 2016 *) %t A271828 LinearRecurrence[{4,-6,4,-1},{1,2,15,64},70] (* _Harvey P. Dale_, Jun 06 2022 *) %o A271828 (Magma) [((2*n-1)^3+3)/2: n in [0..40]]; %o A271828 (PARI) lista(nn) = for(n=0, nn, print1(((2*n-1)^3+3)/2, ", ")); \\ _Altug Alkan_, Apr 15 2016 %Y A271828 Cf. positive integers n such that 2*n + k is a cube: this sequence (k=-3), A050492 (k=-1), A268201 (k=1). %K A271828 nonn,easy %O A271828 1,2 %A A271828 _Juri-Stepan Gerasimov_, Apr 15 2016