cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271829 Prime powers p^k such that p^k = x^3 + y^3 + z^3 where x, y, z are positive integers and k > 1, is soluble.

Original entry on oeis.org

81, 729, 2187, 2809, 3481, 5041, 6859, 14641, 15625, 19683, 24389, 26569, 27889, 59049, 63001, 68921, 83521, 148877, 273529, 300763, 332929, 357911, 375769, 413449, 531441, 597529, 619369, 657721, 683929, 704969, 707281, 744769, 776161, 779689, 844561, 877969, 912673
Offset: 1

Views

Author

Altug Alkan, Apr 15 2016

Keywords

Comments

Obviously, this sequence is infinite.
Intersection of A003072 and A025475.
The first terms of this sequence are 3^4, 3^6, 3^7, 53^2, 59^2, 71^2, 19^3, 11^4, 5^6, 3^9, 29^3, 163^2, 167^2, 3^10, ...

Examples

			81 is a term because 81 = 3^4 = 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[! PrimeQ@ #, PrimePowerQ@ #, Length[PowersRepresentations[#, 3, 3] /. {0, } -> Nothing] > 0] &] (* Michael De Vlieger, Apr 17 2016 *)
  • PARI
    list(lim) = my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y),if(isprimepower(k+z^3) && !isprime(k+z^3), listput(v, k+z^3))))); Set(v);