cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A271877 Decimal expansion of Matthews' constant C_4, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 2, 6, 1, 0, 7, 4, 4, 6, 3, 1, 4, 9, 1, 7, 7, 0, 8, 0, 8, 3, 2, 4, 9, 3, 9, 4, 3, 1, 3, 8, 2, 1, 4, 6, 7, 2, 5, 5, 6, 2, 6, 6, 7, 3, 6, 4, 0, 5, 5, 3, 8, 0, 4, 5, 2, 7, 6, 1, 1, 7, 3, 3, 7, 1, 0, 2, 4, 9, 8, 2, 0, 0, 5, 6, 5, 8, 7, 0, 1, 4, 0, 9, 9, 6, 8, 4, 7, 0, 4, 8, 1, 5, 1, 1, 5, 2, 2, 6, 0, 3, 8, 6, 9, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.026107446314917708083...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; LR = LinearRecurrence[{2, 3, -10, 10, -5, 1}, {0, -8, 6, -40, 35, -194}, 10^4]; r[n_Integer] := LR[[n]]; NSum[r[n] PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2000, WorkingPrecision -> 300, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, 20]& // First // Prepend[#, 0]&
    $MaxExtraPrecision = 1000; Clear[f]; f[p_] := 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)); Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 105]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
  • PARI
    prodeulerrat(1 - (p^4 - (p - 1)^4)/(p^4*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_4 = Product_{p prime} 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020
Showing 1-1 of 1 results.