cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271872 Decimal expansion of the doubly infinite sum N_3 = Sum_{i,j,k = -inf..inf} (-1)^(i+j+k)/(i^2+j^2+k^2), a lattice constant analog of Madelung's constant (negated).

Original entry on oeis.org

2, 5, 1, 9, 3, 5, 6, 1, 5, 2, 0, 8, 9, 4, 4, 5, 3, 1, 3, 3, 4, 2, 7, 1, 1, 7, 2, 7, 3, 2, 9, 4, 3, 7, 9, 1, 2, 1, 1, 6, 4, 9, 9, 1, 3, 6, 7, 5, 1, 7, 3, 2, 5, 7, 7, 5, 0, 0, 6, 6, 0, 7, 8, 5, 6, 7, 7, 4, 3, 9, 0, 1, 2, 6, 9, 1, 8, 7, 2, 7, 7, 4, 0, 9, 6, 4, 2, 8, 0, 2, 1, 0, 1, 6, 2, 3, 7, 3, 0, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 24 2016

Keywords

Examples

			-2.51935615208944531334271172732943791211649913675173257750066...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.10 Madelung's constant, p. 77.

Crossrefs

Cf. A088537 (M_2), A085469 (M_3), A090734 (M_4), A086054 (N_2).

Programs

  • Mathematica
    digits = 101; Clear[s]; s[max_] := s[max] = NSum[(-1)^n Csch[Pi *Sqrt[m^2 + 2 n^2]]/Sqrt[m^2 + 2 n^2], {m, 1, max}, {n, 1, max}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; s[10]; s[max = 20]; Print[max]; While[RealDigits[s[max], 10, digits + 5][[1]] != RealDigits[s[max/2], 10, digits + 5][[1]], max = max*2; Print[max]]; N3 = Pi^2/3 - Pi*Log[2] - Pi/Sqrt[2] Log[2 (Sqrt[2] + 1)] + 8 Pi*s[max]; RealDigits[N3, 10, digits][[1]]

Formula

N_3 = Pi^2/3-Pi*log(2)-(Pi/sqrt(2))*log(2(sqrt(2)+1))+8 Pi*Sum_{m,n >= 1} (-1)^n csch(Pi*sqrt(m^2+2n^2))/sqrt(m^2+2n^2).