A271877 Decimal expansion of Matthews' constant C_4, an analog of Artin's constant for primitive roots.
0, 2, 6, 1, 0, 7, 4, 4, 6, 3, 1, 4, 9, 1, 7, 7, 0, 8, 0, 8, 3, 2, 4, 9, 3, 9, 4, 3, 1, 3, 8, 2, 1, 4, 6, 7, 2, 5, 5, 6, 2, 6, 6, 7, 3, 6, 4, 0, 5, 5, 3, 8, 0, 4, 5, 2, 7, 6, 1, 1, 7, 3, 3, 7, 1, 0, 2, 4, 9, 8, 2, 0, 0, 5, 6, 5, 8, 7, 0, 1, 4, 0, 9, 9, 6, 8, 4, 7, 0, 4, 8, 1, 5, 1, 1, 5, 2, 2, 6, 0, 3, 8, 6, 9, 4, 0
Offset: 0
Examples
0.026107446314917708083...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.
Links
- K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta arithmetica, Vol. 29, No. 2 (1976), pp. 113-146.
Programs
-
Mathematica
$MaxExtraPrecision = 2000; LR = LinearRecurrence[{2, 3, -10, 10, -5, 1}, {0, -8, 6, -40, 35, -194}, 10^4]; r[n_Integer] := LR[[n]]; NSum[r[n] PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2000, WorkingPrecision -> 300, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, 20]& // First // Prepend[#, 0]& $MaxExtraPrecision = 1000; Clear[f]; f[p_] := 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)); Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 105]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
-
PARI
prodeulerrat(1 - (p^4 - (p - 1)^4)/(p^4*(p - 1))) \\ Amiram Eldar, Mar 16 2021
Formula
C_4 = Product_{p prime} 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)).
Extensions
More digits from Vaclav Kotesovec, Jun 19 2020