A271882 Numbers k such that (10^k + 101)/3 is prime.
1, 2, 3, 6, 9, 12, 23, 39, 59, 168, 198, 203, 231, 449, 863, 920, 1064, 1484, 1674, 2018, 2943, 3123, 4073, 4122, 8360, 11774, 16031, 26507, 31146, 33170, 44952, 62402, 88020, 89687
Offset: 1
Examples
3 is in this sequence because (10^3+101)/3 = 367 is prime. Initial terms and associated primes: a(1) = 1, 37; a(2) = 2, 67; a(3) = 3, 367; a(4) = 6, 333367; a(5) = 9, 333333367, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 3w67.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(10^#+101)/3] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((10^n+101)/3), print1(n, ", "))); \\ Altug Alkan, Apr 16 2016
Comments