cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271886 Decimal expansion of the constant D related to the conjectured asymptotic expression of the counting function of prime triples as D*n/log(n)^3.

Original entry on oeis.org

2, 8, 5, 8, 2, 4, 8, 5, 9, 5, 7, 1, 9, 2, 2, 0, 4, 3, 2, 4, 3, 0, 1, 3, 4, 6, 6, 0, 7, 2, 6, 3, 5, 0, 8, 7, 8, 0, 3, 9, 2, 9, 5, 5, 9, 2, 9, 9, 5, 6, 7, 6, 0, 2, 9, 0, 4, 8, 8, 0, 5, 0, 7, 2, 1, 9, 0, 5, 3, 0, 7, 5, 9, 0, 2, 2, 6, 2, 6, 3, 4, 6, 9, 3, 6, 1, 3, 1, 1, 2, 4, 0, 4, 3, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			2.8582485957192204324301346607263508780392955929956760290488...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 85.

Crossrefs

Cf. A005597.

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 96; terms = 1000; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{4, -3}, {-6, -24}, terms + 10]]; r[n_Integer] := LR[[n]]; (9/2)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
  • PARI
    (9/2) * prodeulerrat(p^2*(p-3)/(p-1)^3, 1, 5) \\ Amiram Eldar, Mar 11 2021

Formula

D = (9/2) Product_{p prime > 3} p^2(p-3)/(p-1)^3.