cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271914 Symmetric array read by antidiagonals: T(n,k) (n>=1, k>=1) = maximal number of points that can be chosen in an n X k rectangular grid such that no three distinct points form an isosceles triangle.

This page as a plain text file.
%I A271914 #63 Dec 01 2016 01:33:04
%S A271914 1,2,2,3,2,3,4,4,4,4,5,4,4,4,5,6,5,5,5,5,6,7,6,6,6,6,6,7,8,7,8,7,7,8,
%T A271914 7,8,9,8,8,8,8,8,8,8,9,10,9,10,9,9,9,9,10,9,10
%N A271914 Symmetric array read by antidiagonals: T(n,k) (n>=1, k>=1) = maximal number of points that can be chosen in an n X k rectangular grid such that no three distinct points form an isosceles triangle.
%C A271914 It is conjectured that T(n,k) <= n+k-1.
%C A271914 The array is symmetric: T(n,k) = T(k,n).
%C A271914 The main diagonal T(n,n) appears to equal 2n-2 for n>1. (This diagonal is presently A271907, but if it really is 2n-2 that entry may be recycled.)
%C A271914 The triangle must have nonzero area (three collinear points don't count as a triangle).
%H A271914 Rob Pratt, <a href="/A271914/a271914.txt">Complete list of examples where T(n,k) != n+k-2 for 10 >= n >= k >= 2</a>. Note T(9,6) = T(6,9) = 12, which is n+k-3.
%F A271914 From _Chai Wah Wu_, Nov 30 2016: (Start)
%F A271914 T(n,k) >= max(n,k).
%F A271914 T(n,max(k,m)) <= T(n,k+m) <= T(n,k) + T(n,m).
%F A271914 T(n,1) = n.
%F A271914 T(n,2) = n for n > 3.
%F A271914 For n > 4, T(n,3) >= n+1 if n is odd and T(n,3) >= n+2 if n is even.
%F A271914 Conjecture: For n > 4, T(n,3) = n+1 if n is odd and T(n,3) = n+2 if n is even.
%F A271914 Conjecture: If n is even, then T(n,k) <= n+k-2 for k >= 2n.
%F A271914 (End)
%e A271914 The array begins:
%e A271914    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
%e A271914    2,  2,  4,  4,  5,  6,  7,  8,  9, 10, ...
%e A271914    3,  4,  4,  5,  6,  8,  8, 10, 10, 12, ...
%e A271914    4,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
%e A271914    5,  5,  6,  7,  8,  9, 10, 12, 12, 14, ...
%e A271914    6,  6,  8,  8,  9, 10, 11, 12, 12, 14, ...
%e A271914    7,  7,  8,  9, 10, 11, 12, 13, 14, 16, ...
%e A271914    8,  8, 10, 10, 12, 12, 13, 14, 16, 16, ...
%e A271914    9,  9, 10, 11, 12, 12, 14, 16, 16, 18, ...
%e A271914   10, 10, 12, 12, 14, 14, 16, 16, 18, 18, ...
%e A271914   ...
%e A271914 As a triangle:
%e A271914    1,
%e A271914    2,  2,
%e A271914    3,  2,  3,
%e A271914    4,  4,  4,  4,
%e A271914    5,  4,  4,  4,  5,
%e A271914    6,  5,  5,  5,  5,  6,
%e A271914    7,  6,  6,  6,  6,  6,  7,
%e A271914    8,  7,  8,  7,  7,  8,  7,  8,
%e A271914    9,  8,  8,  8,  8,  8,  8,  8,  9,
%e A271914   10,  9, 10,  9,  9,  9,  9, 10,  9, 10,
%e A271914   ...
%e A271914 Illustration for T(2,3) = 4:
%e A271914 XOX
%e A271914 XOX
%e A271914 Illustration for T(2,5) = 5:
%e A271914 XXXXX
%e A271914 OOOOO
%e A271914 Illustration for T(3,5) = 6 (this left edge + top edge construction - or a slight modification of it - works in many cases):
%e A271914 OXXXX
%e A271914 XOOOO
%e A271914 XOOOO
%e A271914 Illustration for T(3,6) = 8:
%e A271914 XXOOXX
%e A271914 OOOOOO
%e A271914 XXOOXX
%e A271914 Illustration for T(3,8) = 10:
%e A271914 OXXXXXXO
%e A271914 XOOOOOOX
%e A271914 XOOOOOOX
%e A271914 Illustration for T(6,9) = 12:
%e A271914 OXOOOOOOX
%e A271914 OOXXXXXXO
%e A271914 OOOOOOOOO
%e A271914 OXOOOOOOX
%e A271914 OXOOOOOOX
%e A271914 OOOOOOOOO
%e A271914 From _Bob Selcoe_, Apr 24 2016 (Start)
%e A271914 Two symmetric illustrations for T(6,9) = 12:
%e A271914 Grid 1:
%e A271914 X X O O O O O X X
%e A271914 O O O O O O O O O
%e A271914 O O O O O O O O O
%e A271914 O X X X O X X X O
%e A271914 X O O O O O O O X
%e A271914 O O O O O O O O O
%e A271914 Grid 2:
%e A271914 X O O O O O O O X
%e A271914 X O O O O O O O X
%e A271914 O O O O O O O O O
%e A271914 O X X X O X X X O
%e A271914 X O O O O O O O X
%e A271914 O O O O O O O O O
%e A271914 (Note that a symmetric solution is obtained for T(5,9) = 12 by removing row 6)
%e A271914 (End)
%Y A271914 Cf. A271910.
%Y A271914 Main diagonal is A271907.
%K A271914 nonn,tabl,more
%O A271914 1,2
%A A271914 _Rob Pratt_ and _N. J. A. Sloane_, Apr 24 2016