This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271922 #15 Dec 16 2018 03:30:06 %S A271922 1,5,10,11,22,187,935,1955,391,11339,45356,667,2668,27347,601634, %T A271922 614713,6147130,162898945,11847196,6025729,24102916,30128645, %U A271922 512186965,7273054903,7273054903,80003603933,400018019665,809792576395,9526971487,77081860213,1772882784899,188604551585,188604551585 %N A271922 Denominator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)). %H A271922 J. de Gier, <a href="https://arxiv.org/abs/math/0211285">Loops, matchings and alternating-sign matrices</a>, arXiv:math/0211285 [math.CO], 2002-2003. %e A271922 1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ... %p A271922 f:=proc(n) local j; %p A271922 mul(((3*j+1)/(3*j+2)),j=1..n-1); end; %p A271922 t2:=[seq(n*f(n),n=1..50)]; %p A271922 map(numer,t2); %p A271922 map(denom,t2); %t A271922 Table[Denominator[n Product[(3j+1)/(3j+2), {j, 1, n-1}]], {n, 1, 33}] (* _Jean-François Alcover_, Dec 16 2018 *) %o A271922 (PARI) a(n) = denominator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ _Michel Marcus_, Dec 16 2018 %Y A271922 Sequences of fractions from de Gier paper: A271919-A271926. %K A271922 nonn,frac %O A271922 1,2 %A A271922 _N. J. A. Sloane_, May 04 2016