cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271924 Denominator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

1, 3, 13, 19, 285, 465, 17205, 147963, 345247, 11137, 291153, 175741, 12829093, 494964309, 494964309, 919219431, 6858791139, 706455487317, 77003648117553, 1262354887173, 1262354887173, 26321041453443, 500099787615417, 952244801075931, 50118147425049, 95795446344081
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.

Programs

  • Maple
    f3:=proc(n) local j;
    (1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Denominator;
    Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)