cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271925 Numerator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

3, 5, 87, 156, 913, 1693, 69769, 658529, 5002953, 173619, 1616141, 3107877, 239756907, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271926 (denominators), A073005, A186706.

Programs

  • Maple
    f3:=proc(n) local j;
    (mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Numerator (* Vaclav Kotesovec, Oct 13 2017 *)

Formula

a(n)/A271926(n) ~ c * (2*n)^(2/3), where c = Gamma(1/3)*3^(3/2)/(2*Pi) = 3*A073005/A186706. - Amiram Eldar, Aug 17 2025