This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271944 #18 Sep 08 2022 08:46:16 %S A271944 0,2,4,22,56,250,732,2926,9264,34866,115316,419846,1422824,5086122, %T A271944 17471692,61823966,213983072,752927074,2616950756,9179311350, %U A271944 31978941080,111975792474,390606950844,1366410142030,4769896907152,16676981234578,58239643256916 %N A271944 Expansion of 2*x*(1 + x)/(1 - x - 9*x^2 + x^3). %H A271944 Roman Witula, Damian Slota and Adam Warzynski, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Slota/slota57.html">Quasi-Fibonacci Numbers of the Seventh Order</a>, J. Integer Seq., 9 (2006), Article 06.4.3 (p. 26, table 5). %H A271944 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,9,-1). %F A271944 G.f.: 2*x*(1 + x)/(1 - x - 9*x^2 + x^3). %F A271944 a(n) = a(n-1) + 9*a(n-2) - a(n-3). %t A271944 CoefficientList[Series[2 x (1 + x)/(1 - x - 9 x^2 + x^3), {x, 0, 33}], x] %o A271944 (Magma) [n le 2 select 2*n else Self(n)+9*Self(n-1)-Self(n-2): n in [0..30]]; %o A271944 (PARI) x='x+O('x^99); concat(0, Vec(2*x*(1+x)/(1-x-9*x^2+x^3))) \\ _Altug Alkan_, Apr 18 2016 %o A271944 (Sage) gf = 2*x*(1+x)/(1-x-9*x^2+x^3); taylor(gf, x, 0, 40).list() # _Bruno Berselli_, Apr 18 2016 %Y A271944 Cf. A121442. %K A271944 nonn,easy %O A271944 0,2 %A A271944 _Vincenzo Librandi_, Apr 18 2016