A271951 Decimal expansion of (1/2) Product_{p prime} 1+1/(p-1)^3, a constant related to I. M. Vinogradov's proof of the "ternary" Goldbach conjecture.
1, 1, 5, 0, 4, 8, 0, 7, 7, 2, 3, 5, 6, 6, 1, 8, 5, 2, 7, 2, 7, 8, 4, 8, 8, 0, 7, 4, 3, 7, 4, 6, 9, 8, 0, 9, 0, 6, 3, 0, 3, 9, 3, 2, 9, 8, 5, 1, 1, 0, 8, 3, 6, 8, 0, 6, 8, 8, 1, 9, 3, 0, 5, 9, 0, 2, 2, 8, 2, 6, 3, 2, 3, 2, 5, 4, 3, 8, 0, 1, 3, 7, 1, 5, 7, 4, 0, 5, 2, 0, 9, 2, 9, 9, 4, 3, 6, 3, 8
Offset: 1
Examples
1.150480772356618527278488074374698090630393298511083680688193059...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 88.
Links
- Eric Weisstein's MathWorld, Goldbach Conjecture.
- Eric Weisstein's MathWorld, Vinogradov's theorem.
- Wikipedia, Goldbach's conjecture.
- Wikipedia, Vinogradov's theorem.
Crossrefs
Cf. A005597.
Programs
-
Mathematica
$MaxExtraPrecision = 1600; digits = 99; terms = 1600; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0}, LinearRecurrence[{4, -6, 3}, {3, 12, 30}, terms + 10]]; r[n_Integer] := LR[[n]]; (1/2) Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
-
PARI
(1/2) * prodeulerrat(1+1/(p-1)^3) \\ Amiram Eldar, Mar 14 2021