cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271953 a(n) is the period of A000930 modulo n.

Original entry on oeis.org

1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, 399, 248, 56, 288, 168, 381, 434, 456, 420, 528, 56, 155, 168, 72, 798, 840, 1736, 930, 112, 120, 2016, 1767, 168, 342, 2667, 168, 868, 1723, 3192, 1848, 420, 744, 3696, 46, 56, 399, 1085, 288, 168, 468, 504, 1860, 1596, 3048, 840, 3541, 1736, 1240, 6510
Offset: 1

Views

Author

Joerg Arndt, Apr 17 2016

Keywords

Crossrefs

Cf. A000930, A271901 (periods mod primes), A001175 (periods of A000045 modulo n).

Programs

  • Mathematica
    minlen = 100; maxlen = 2*10^4;
    per[lst_] := FindTransientRepeat[lst, 2] // Last // Length;
    a[n_] := Module[{p0=0, len=minlen}, While[p0 = Mod[LinearRecurrence[{1, 0, 1}, {1, 1, 1}, len], n] // per; p0<=1 && len<=maxlen, len = 2 len]; p0];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Jul 21 2018 *)
  • PARI
    per(n, S, R) = {  \\ S[]: leading terms, R[]: recurrence
        if ( n==1, return( 1 ) );
        my ( r = #R );
        if ( r != #S , error("Mismatch in length of S[] and R[]") );
        S = vector(#S, j, Mod(S[j], n) );
        R = vector(#S, j, Mod(R[j], n) );
        my( T = S );
        my( j = 0 );
        until ( 0,  \\ forever
            j += 1;
            my( t = sum(i=1, r, R[i] * T[r+1-i] ) );  \\ next term
            for (k=1, r-1, T[k] = T[k+1] );
            T[r] = t;
            if ( T == S , return(j) );
        );
    }
    \\vector(66, n, per(n, [0,1], [1,1]) )  \\ A001175
    \\vector(66, n, per(prime(n), [0,1], [1,1]) )  \\ A060305
    vector(66, n, per(n, [0,0,1], [1,0,1]) )  \\ A271953
    \\vector(66, n, per(prime(n), [0,0,1], [1,0,1]) )  \\ A271901
    \\vector(66, n, per(n, [0,0,1], [0,1,1]) )  \\ A104217
    /* Joerg Arndt, Apr 17 2016 */

Formula

Let the prime factorization of n be p1^e1*...*pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)) [Engstrom]. - N. J. A. Sloane, Feb 18 2017