cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271971 Decimal expansion of (6/Pi^2) Sum_{p prime} 1/(p(p+1)), a Meissel-Mertens constant related to the asymptotic density of certain sequences of integers.

Original entry on oeis.org

2, 0, 0, 7, 5, 5, 7, 2, 2, 0, 1, 9, 2, 6, 5, 9, 8, 6, 9, 9, 6, 2, 5, 0, 7, 2, 3, 1, 1, 4, 4, 0, 4, 7, 6, 5, 8, 5, 3, 5, 3, 5, 5, 5, 5, 3, 5, 2, 5, 6, 1, 9, 1, 6, 1, 5, 9, 7, 6, 3, 2, 9, 8, 3, 6, 5, 2, 5, 4, 0, 7, 4, 7, 4, 7, 9, 6, 4, 9, 7, 9, 1, 2, 1, 1, 9, 0, 9, 4, 2, 6, 8, 4, 5, 0, 3, 5, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Comments

This is the density of A060687, the numbers with one 2 and the rest 1s in the exponents of its prime factorization. - Charles R Greathouse IV, Aug 03 2016

Examples

			0.200755722019265986996250723114404765853535555352561916...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens Constants, p. 95.

Crossrefs

Programs

  • Mathematica
    digits = 100; S = (6/Pi^2)*NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[ S, 10, digits] // First
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2, (-1)^k*primezeta(k))*6/Pi^2 \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1)))/zeta(2) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (6/Pi^2)*A179119.