This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271973 #12 Sep 12 2017 21:31:47 %S A271973 1,10,9,30,65,5,74,86,368,135,970,50,95,101,1045,178,793,7,214,196,18, %T A271973 423,133,200,2572,629,621,358,700,451,3167,1924,3611,1926,662,510, %U A271973 6688,437,1525,5072,3724,3161,1034,240,5848,2487,704,442,19120,1230,5138,3524 %N A271973 Smallest number k such that gcd(s1, s2) = n, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) trajectory of k. %e A271973 a(6) = 5 because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16+8+4+2 = 30 => gcd(6,30) = 6. %p A271973 nn:=10^8: %p A271973 for n from 1 to 60 do: %p A271973 ii:=0: %p A271973 for k from 1 to nn while(ii=0) do: %p A271973 kk:=1:m:=k:T[kk]:=k:it:=0: %p A271973 for i from 1 to nn while(m<>1) do: %p A271973 if irem(m,2)=0 %p A271973 then %p A271973 m:=m/2:kk:=kk+1:T[kk]:=m: %p A271973 else %p A271973 m:=3*m+1:kk:=kk+1:T[kk]:=m: %p A271973 fi: %p A271973 od: %p A271973 s1:=0:s2:=0: %p A271973 for j from 1 to kk do: %p A271973 if irem(T[j],2)=1 %p A271973 then %p A271973 s1:=s1+T[j]: %p A271973 else %p A271973 s2:=s2+T[j]: %p A271973 fi: %p A271973 od: %p A271973 g:=gcd(s1,s2): %p A271973 if g=n %p A271973 then %p A271973 ii:=1:printf("%d %d \n",n,k): %p A271973 else fi: %p A271973 od: %p A271973 od: %t A271973 Table[k = 1; While[n != GCD[Total@ Select[#, OddQ], Total@ Select[#, EvenQ]] &@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, k, # > 1 &], k++]; k, {n, 52}] (* _Michael De Vlieger_, Jul 13 2016 *) %Y A271973 Cf. A213909, A213916. %K A271973 nonn %O A271973 1,2 %A A271973 _Michel Lagneau_, Jul 13 2016