cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271975 a(n) = G_n(18), where G is the Goodstein function defined in A266201.

This page as a plain text file.
%I A271975 #10 Jan 11 2020 15:57:47
%S A271975 18,7625597484989,
%T A271975 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097
%N A271975 a(n) = G_n(18), where G is the Goodstein function defined in A266201.
%e A271975 G_1(18) = B_2(18)-1 = B_2(2^2^2+2)-1 = 3^3^3+3-1 = 7625597484989;
%e A271975 G_2(18) = B_3(3^3^3+2)-1 = 4^4^4+2-1 has 154 digits;
%e A271975 G_3(18) = B_4(4^4^4+1)-1 = 5^5^5 has 2184 digits;
%e A271975 G_4(18) = B_5(5^5^5)-1 = 6^6^6-1 = has 36305 digits.
%Y A271975 Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A222117: G_n(15), A059933: G_n(16), A271562: G_n(17), A211378: G_n(19), A266201: G_n(n).
%K A271975 nonn,fini
%O A271975 0,1
%A A271975 _Natan Arie Consigli_, Apr 24 2016