This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271978 #30 Sep 25 2020 10:18:39 %S A271978 0,173,2454,332147,37665879,774841151,1162263921,1937434592, %T A271978 2749609302,3486784574,3486786855,3487116548,3524450280 %N A271978 G_7(n), where G is the Goodstein function defined in A266201. %C A271978 a(16) is too big to include - see b-file. a(17) = 9.221...*10^2347, a(18) = 2.509...*10^316952. - _Pontus von Brömssen_, Sep 25 2020 %H A271978 Pontus von Brömssen, <a href="/A271978/b271978.txt">Table of n, a(n) for n = 3..16</a> %H A271978 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goodstein's_theorem">Goodstein's theorem</a> %e A271978 Find G_7(7): %e A271978 G_1(7) = B_2(7)-1= B[2](2^2+2+1)-1 = 3^3+3+1-1 = 30; %e A271978 G_2(7) = B_3(G_1(7))-1 = B[3](3^3+3)-1 = 4^4+4-1 = 259; %e A271978 G_3(7) = B_4(G_2(7))-1 = 5^5+3-1 = 3127; %e A271978 G_4(7) = B_5(G_3(7))-1 = 6^6+2-1 = 46657; %e A271978 G_5(7) = B_6(G_4(7))-1 = 7^7+1-1 = 823543; %e A271978 G_6(7) = B_7(G_5(7))-1 = 8^8-1 = 16777215; %e A271978 G_7(7) = B_8(G_6(7))-1 = 7*9^7+7*9^6+7*9^5+7*9^4+7*9^3+7*9^2+7*9+7-1 = 37665879. %o A271978 (Python) %o A271978 from sympy.ntheory.factor_ import digits %o A271978 def bump(n,b): %o A271978 s=digits(n,b)[1:] %o A271978 l=len(s) %o A271978 return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i]) %o A271978 def A271978(n): %o A271978 if n==3: return 0 %o A271978 for i in range(2,9): %o A271978 n=bump(n,i)-1 %o A271978 return n # _Pontus von Brömssen_, Sep 25 2020 %Y A271978 Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); this sequence: G_7(n); A271979: G_8(n); A271985: G_9(n); A271986: G_10(n); A266201: G_n(n). %K A271978 nonn %O A271978 3,2 %A A271978 _Natan Arie Consigli_, Apr 30 2016 %E A271978 a(9) corrected by _Pontus von Brömssen_, Sep 25 2020