cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271986 G_10(n), where G is the Goodstein function defined in A266201.

This page as a plain text file.
%I A271986 #15 Sep 25 2020 11:15:22
%S A271986 0,299,5643,1357259,273624711,17832200896811,26748301350411,
%T A271986 44580503598539,62412976762503,106993205379371,106993205384715,
%U A271986 106993206736331,106993479003783
%N A271986 G_10(n), where G is the Goodstein function defined in A266201.
%C A271986 a(17) = 1.926...*10^6103. - _Pontus von Brömssen_, Sep 25 2020
%H A271986 Pontus von Brömssen, <a href="/A271986/b271986.txt">Table of n, a(n) for n = 3..16</a>
%H A271986 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goodstein&#39;s_theorem">Goodstein's theorem</a>
%o A271986 (Python)
%o A271986 from sympy.ntheory.factor_ import digits
%o A271986 def bump(n,b):
%o A271986   s=digits(n,b)[1:]
%o A271986   l=len(s)
%o A271986   return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
%o A271986 def A271986(n):
%o A271986   if n==3: return 0
%o A271986   for i in range(2,12):
%o A271986     n=bump(n,i)-1
%o A271986   return n # _Pontus von Brömssen_, Sep 25 2020
%Y A271986 Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); A271978: G_7(n); A271979: G_8(n); A271985: G_9(n); this sequence: G_10(n); A266201: G_n(n).
%K A271986 nonn
%O A271986 3,2
%A A271986 _Natan Arie Consigli_, May 01 2016
%E A271986 Incorrect program and terms removed by _Pontus von Brömssen_, Sep 25 2020