A271987 g_n(6) where g is the weak Goodstein function defined in A266202.
6, 11, 17, 25, 35, 39, 43, 47, 51, 55, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161
Offset: 0
Examples
g_1(6) = b_2(6)-1 = b_2(2^2+2)-1 = 3^2+3-1 = 11; g_2(6) = b_3(3^2+2)-1 = 4^2+2-1 = 17; g_3(6) = b_4(4^2+1)-1 = 5^2+1-1 = 25; g_4(6) = b_5(5^2)-1 = 6^2-1 = 35; g_5(6) = b_6(5*6+5)-1 = 5*7+5-1 = 39; g_6(6) = b_7(5*7+4)-1 = 5*8+4-1 = 43; g_7(6) = b_8(5*8+3)-1 = 5*9+3-1 = 47; g_8(6) = b_9(5*9+2)-1 = 5*10+2-1 = 51; g_9(6) = b_10( 5*10+1)-1 = 5*11+1-1= 55; g_10(6) = b_11(5*11)-1 = 5*12-1 = 59; g_11(6) = b_12(4*12+11)-1 = 4*13+11-1= 62; g_12(6) = b_13(4*13+10)-1 = 4*14+10-1 = 65; ... g_381(6) = 0.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..381
Crossrefs
Programs
-
Mathematica
g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 6], {n, 0, 64}] (* Michael De Vlieger, May 17 2016 *)
Comments