A271988 g_n(7) where g is the weak Goodstein function defined in A266202.
7, 12, 19, 27, 37, 49, 63, 69, 75, 81, 87, 93, 99, 105, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 271, 275, 279, 283, 287, 291, 295, 299, 303, 307, 311, 315, 319, 322, 325
Offset: 0
Examples
g_1(7)= b_2(7)-1 = b_2(2^2+2+1)-1 = 3^2+3+1-1 = 12; g_2(7) = b_3(3^2+3)-1 = 4^2+4-1 = 19; g_3(7) = b_4(4^2+3)-1 = 5^2+3-1 = 27; g_4(7) = b_5(5^2+2)-1 = 6^2+2-1 = 37; g_5(7) = b_6(6^2+1)-1 = 7^2+1-1 = 49; g_6(7) = b_7(7^2)-1 = 8^2-1 = 63; g_7(7) = b_8(7*8+7)-1 = 7*9+7-1 = 69; ... g_2045(7) = 0.
Crossrefs
Programs
-
Mathematica
g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 7], {n, 0, 64}]
Comments