cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271992 g_n(16) where g is the weak Goodstein function defined in A266202.

This page as a plain text file.
%I A271992 #12 Jan 11 2020 15:57:47
%S A271992 16,80,169,310,515,795,1163,1631,2211,2915,3755,4742,5889,7208,8711,
%T A271992 10410,12317,14444,16803,19406,22265,25392,28799,32472,36447,40736,
%U A271992 45351,50304,55607,61272,67311,73736,80559,87792,95447,103536,112071
%N A271992 g_n(16) where g is the weak Goodstein function defined in A266202.
%C A271992 For more information see A266201 and A266202.
%t A271992 g[k_, n_] :=
%t A271992 If[k == 0, n,
%t A271992   Total@Flatten@
%t A271992        MapIndexed[#1 (k + 2)^(#2 - 1) &,
%t A271992         Reverse@IntegerDigits[#, k + 1]] &@g[k - 1, n] - 1]; Table[
%t A271992 g[n, 16], {n, 0, 36}]
%Y A271992 Cf. A271557: G_n(10).
%Y A271992 Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0.
%K A271992 nonn,fini
%O A271992 0,1
%A A271992 _Natan Arie Consigli_, May 24 2016