cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271999 Halogen sequence: a(n) = A018227(n)-1.

Original entry on oeis.org

1, 11, 17, 35, 53, 85, 117, 167, 217, 289, 361, 459, 557, 685, 813, 975, 1137, 1337, 1537, 1779, 2021, 2309, 2597, 2935, 3273, 3665, 4057, 4507, 4957, 5469, 5981, 6559, 7137, 7785, 8433, 9155, 9877, 10677, 11477, 12359, 13241, 14209, 15177, 16235, 17293
Offset: 1

Views

Author

Natan Arie Consigli, Jul 02 2016

Keywords

Comments

Terms from 11 to 117 are the atomic numbers of the elements in group 17 in the periodic table. The elements in this group are also called halogens.

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 11, 17, 35, 53, 85, 117, 167}, 50] (* Paolo Xausa, Oct 21 2024 *)
  • PARI
    Vec(x*(1 + 9*x - 6*x^2 - 6*x^3 + 9*x^4 - x^5 - 4*x^6 + 2*x^7) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 14 2017

Formula

From Colin Barker, Nov 14 2017: (Start)
G.f.: x*(1 + 9*x - 6*x^2 - 6*x^3 + 9*x^4 - x^5 - 4*x^6 + 2*x^7) / ((1 - x)^4*(1 + x)^2).
a(n) = (1/12)*(2*n^3 + 12*n^2 + 28*n - 12) for n>2 and even.
a(n) = (1/12)*(2*n^3 + 12*n^2 + 22*n - 24) for n>2 and odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>8.
(End)