This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272011 #29 Feb 13 2024 08:15:33 %S A272011 0,1,1,0,2,2,0,2,1,2,1,0,3,3,0,3,1,3,1,0,3,2,3,2,0,3,2,1,3,2,1,0,4,4, %T A272011 0,4,1,4,1,0,4,2,4,2,0,4,2,1,4,2,1,0,4,3,4,3,0,4,3,1,4,3,1,0,4,3,2,4, %U A272011 3,2,0,4,3,2,1,4,3,2,1,0,5,5,0,5,1,5,1 %N A272011 Irregular triangle read by rows: strictly decreasing sequences of nonnegative numbers given in lexicographic order. %C A272011 Length of n-th row given by A000120(n); %C A272011 Maximum of n-th row given by A000523(n); %C A272011 Minimum of n-th row given by A007814(n); %C A272011 GCD of n-th row given by A064894(n); %C A272011 Sum of n-th row given by A073642(n + 1). %C A272011 n-th row begins at index A000788(n - 1) for n > 0. %C A272011 The first appearance of n is at A001787(n). %C A272011 a(A001787(n) + 1) = a(A001787(n)) for all n > 0. %C A272011 a(A001787(n) + 2) = 0 for all n > 0. %C A272011 a(A001787(n) + 3) = a(A001787(n)) for all n > 1. %C A272011 a(A001787(n) + 4) = 1 for all n > 1. %C A272011 a(A001787(n) + 5) = a(A001787(n)) for all n > 1. %C A272011 Row n < 1024 lists the digits of A262557(n). - _M. F. Hasler_, Dec 11 2019 %H A272011 Peter Kagey, <a href="/A272011/b272011.txt">Table of n, a(n) for n = 0..10000</a> %e A272011 Row n is given by the exponents in the binary expansion of n. For example, row 5 = [2, 0] because 5 = 2^2 + 2^0. %e A272011 Row 0: [] %e A272011 Row 1: [0] %e A272011 Row 2: [1] %e A272011 Row 3: [1, 0] %e A272011 Row 4: [2] %e A272011 Row 5: [2, 0] %e A272011 Row 6: [2, 1] %e A272011 Row 7: [2, 1, 0] %t A272011 Map[Length[#] - Flatten[Position[#, 1]] &, IntegerDigits[Range[50], 2]] (* _Paolo Xausa_, Feb 13 2024 *) %o A272011 (PARI) apply( A272011_row(n)=Vecrev(vecextract([0..exponent(n+!n)],n)), [0..39]) \\ For n < 2^10: row(n)=digits(A262557[n]). There are 2^k rows starting with k, they start at row 2^k. - _M. F. Hasler_, Dec 11 2019 %Y A272011 Cf. A000120, A000523, A001787, A007814, A064894, A073642. %Y A272011 Cf. A133457 gives the rows in reverse order. %Y A272011 Cf. A272020, A262557. %K A272011 nonn,tabf %O A272011 0,5 %A A272011 _Peter Kagey_, Apr 17 2016