This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272022 #30 Dec 29 2023 10:56:56 %S A272022 13,14,16,17,20,30,31,32,34,35,37,38,50,70,71,73,74,76,79,91,92,95,97, %T A272022 98,110,113,118,119,131,133,199,311,337,373,733,772,775,778,779,919, %U A272022 991,1118,3337,7771,77779 %N A272022 Look at the set of numbers obtained by permuting the digits of n in all possible ways, then remove n itself from the set. If the remaining numbers are all primes, then n is in the sequence. %C A272022 If it exists, a(46) > 5*10^11. - _Lars Blomberg_, Mar 31 2018 %e A272022 119 is in the sequence because every permutation of its digits excluding 119 (i.e., 191 and 911) is a prime. %e A272022 11 is not in the sequence, because when 11 is removed from the set, no numbers are left. %p A272022 lis := []; %p A272022 for n from 1 to 10000 do %p A272022 nn := convert(n, base, 10); %p A272022 pp := combinat[permute](nn); %p A272022 if nops(pp) = 1 then %p A272022 next %p A272022 end if; %p A272022 lOk := true; %p A272022 for p in pp do %p A272022 if p = nn then %p A272022 next: #exclude n %p A272022 end if; %p A272022 if `not`(isprime(convert(p, base, 10, 10^nops(p))[])) then %p A272022 lOk := false; break %p A272022 end if %p A272022 end do; %p A272022 if lOk then %p A272022 lis := [op(lis), n] %p A272022 end if %p A272022 end do: %p A272022 lis := lis; %t A272022 rnapQ[n_]:=Module[{p=Rest[FromDigits/@Permutations[IntegerDigits[ n]]]},If[ Length[p]==0, False, AllTrue[p,PrimeQ]]]; Select[Range[80000],rnapQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 24 2019 *) %o A272022 (PARI) isok(n) = {v = []; d = digits(n); for (k=0, (#d)!-1, p = numtoperm(#d, k); dp = vector(#d, j, d[p[j]]); np = subst(Pol(dp), x, 10); v = Set(concat(v, np));); v = setminus(v, Set(n)); if (#v == 0, return (0)); for (k=1, #v, if (!isprime(v[k]), return (0));); return (1);} \\ _Michel Marcus_, Apr 18 2016 %o A272022 (Python) %o A272022 from sympy import isprime %o A272022 from itertools import count, islice, permutations %o A272022 def agen(): yield from (k for k in count(1) if len(set(s:=str(k)))!=1 and all((t:=int("".join(m)))==k or isprime(t) for m in permutations(s))) %o A272022 print(list(islice(agen(), 45))) # _Michael S. Branicky_, Dec 29 2023 %Y A272022 Cf. A095179, A111347. %Y A272022 Cf. A003459. - _Altug Alkan_, Apr 18 2016 %K A272022 nonn,base,more %O A272022 1,1 %A A272022 _César Eliud Lozada_, Apr 18 2016