cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272026 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers A016945 interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

3, 9, 15, 3, 21, 0, 27, 9, 33, 0, 3, 39, 15, 0, 45, 0, 0, 51, 21, 9, 57, 0, 0, 3, 63, 27, 0, 0, 69, 0, 15, 0, 75, 33, 0, 0, 81, 0, 0, 9, 87, 39, 21, 0, 3, 93, 0, 0, 0, 0, 99, 45, 0, 0, 0, 105, 0, 27, 15, 0, 111, 51, 0, 0, 0, 117, 0, 0, 0, 9, 123, 57, 33, 0, 0, 3, 129, 0, 0, 21, 0, 0, 135, 63, 0, 0, 0, 0, 141, 0, 39, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2016

Keywords

Comments

Alternating sum of row n equals 3 times sigma(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = 3*A000203(n) = A272027(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The number of positive terms in row n is A001227(n).
If T(n,k) = 9 then T(n+1,k+1) = 3 is the first element of the column k+1.
For more information see A196020.

Examples

			Triangle begins:
    3;
    9;
   15,  3;
   21,  0;
   27,  9;
   33,  0,  3;
   39, 15,  0;
   45,  0,  0;
   51, 21,  9;
   57,  0,  0,  3;
   63, 27,  0,  0;
   69,  0, 15,  0;
   75, 33,  0,  0;
   81,  0,  0,  9;
   87, 39, 21,  0,  3;
   93,  0,  0,  0,  0;
   99, 45,  0,  0,  0;
  105,  0, 27, 15,  0;
  111, 51,  0,  0,  0;
  117,  0,  0,  0,  9;
  123, 57, 33,  0,  0,  3;
  129,  0,  0, 21,  0,  0;
  135, 63,  0,  0,  0,  0;
  141,  0, 39,  0,  0,  0;
  ...
For n = 9 the divisors of 9 are 1, 3, 9, therefore the sum of the divisors of 9 is 1 + 3 + 9 = 13 and 3*13 = 39. On the other hand the 9th row of triangle is 51, 21, 9, therefore the alternating row sum is 51 - 21 + 9 = 39, equaling 3 times sigma(9).
		

Crossrefs

Formula

T(n,k) = 3*A196020(n,k) = A196020(n,k) + A236106(n,k).