A272028 Decimal expansion of Product_{p prime} (1+1/p)^(1/p), an infinite product considered and computed by Marc Deléglise.
1, 4, 6, 8, 1, 9, 1, 1, 2, 2, 3, 2, 2, 9, 9, 3, 7, 8, 1, 0, 7, 9, 1, 0, 1, 7, 5, 5, 6, 5, 5, 5, 5, 4, 8, 6, 1, 9, 2, 1, 8, 2, 3, 3, 4, 3, 1, 3, 3, 0, 1, 5, 1, 9, 6, 6, 9, 8, 3, 3, 2, 9, 4, 0, 7, 1, 2, 5, 1, 1, 1, 4, 9, 8, 4, 7, 2, 0, 9, 5, 7, 2, 4, 9, 4, 4, 2, 4, 4, 2, 3, 4, 6, 9, 4, 9, 2, 7
Offset: 1
Examples
1.46819112232299378107910175565555486192182334313301519669833294...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A242623 (same product without restriction to primes).
Programs
-
Mathematica
digits = 98; Exp[NSum[(-1)^(n-1)*PrimeZetaP[n-1]/(n-2), {n, 3, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First