A272030 Decimal expansion of C = log(2*Pi) + B_3 (where B_3 is A083343), one of Euler totient constants.
3, 1, 7, 0, 4, 5, 9, 3, 4, 2, 1, 4, 2, 5, 6, 6, 3, 6, 5, 3, 2, 6, 4, 8, 8, 2, 4, 8, 8, 8, 2, 2, 6, 3, 0, 2, 8, 5, 6, 1, 2, 5, 4, 4, 3, 6, 3, 1, 7, 9, 8, 9, 4, 8, 7, 4, 2, 1, 4, 3, 3, 9, 8, 0, 7, 2, 2, 8, 7, 1, 4, 3, 3, 5, 7, 3, 8, 2, 4, 8, 1, 4, 0, 7, 7, 0, 3, 4, 6, 4, 2, 7, 8, 6, 0, 7, 7, 0
Offset: 1
Examples
3.17045934214256636532648824888226302856125443631798948742143398...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 117.
Programs
-
Mathematica
digits = 98; B3 = EulerGamma - NSum[PrimeZetaP'[n], {n, 2, Infinity}, WorkingPrecision -> 2 digits, NSumTerms -> 200]; RealDigits[Log[2 Pi] + B3, 10, digits][[1]]
Formula
C = log(2*Pi) + EulerGamma - Sum_{n >= 2} P'(n), where P'(n) is the prime zeta P function derivative.