cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272056 Decimal expansion of the variance of the degree (valency) of the root of a random rooted tree with n vertices.

This page as a plain text file.
%I A272056 #11 Aug 09 2021 07:23:39
%S A272056 1,4,7,4,1,7,2,6,8,6,8,9,7,8,7,3,7,3,6,3,3,4,3,4,1,8,2,3,3,9,7,5,5,0,
%T A272056 0,1,2,8,4,9,6,2,3,6,0,4,9,5,5,5,8,0,9,0,8,0,2,0,4,2,1,8,7,8,4,5,3,9,
%U A272056 1,3,7,3,9,6,6,5,0,0,9,3,8,7,0,2,8,1,3,6,7,2,8,6,6,6,4,0,2,7
%N A272056 Decimal expansion of the variance of the degree (valency) of the root of a random rooted tree with n vertices.
%D A272056 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.
%H A272056 A. Meir and J. W. Moon, <a href="http://dx.doi.org/10.4153/CJM-1978-085-0">On the altitude of nodes in random trees</a>, Canad. J. Math. 30(1978), 997-1015 Published:1978-10-01, page 1011.
%F A272056 1 + Sum_{j>=1} T_j*(2alpha^j-1)/(alpha^j*(alpha^j-1)^2), where T_j is A000081(j) and alpha A051491.
%e A272056 1.47417268689787373633434182339755001284962360495558090802...
%t A272056 Clear[v]; digits = 98; m0 = 400; dm = 100; v[max_] := v[max] = (Clear[T, s, a]; T[0] = 0; T[1] = 1; T[n_] := T[n] = Sum[Sum[d*T[d], {d, Divisors[j] }]*T[n - j], {j, 1, n - 1}]/(n - 1); s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; 1 + Sum[T[j]*(2 alpha^j - 1)/ (alpha^j*(alpha^j - 1)^2), {j, 1, max}]); v[m0]; v[max = m0 + dm]; While[ Print["max = ", max]; RealDigits[v[max], 10, digits] != RealDigits[ v[max - dm], 10, digits], max = max + dm]; RealDigits[v[max], 10, digits] // First
%Y A272056 Cf. A000081 (T_n), A051491 (alpha), A261124 (expected degree).
%K A272056 nonn,cons
%O A272056 1,2
%A A272056 _Jean-François Alcover_, Apr 19 2016