This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272067 #24 Mar 30 2025 10:31:00 %S A272067 0,6561,96059601,996005996001,9996000599960001,99996000059999600001, %T A272067 999996000005999996000001,9999996000000599999960000001, %U A272067 99999996000000059999999600000001,999999996000000005999999996000000001,9999999996000000000599999999960000000001,99999999996000000000059999999999600000000001 %N A272067 a(n) = (10^n-1)^4. %C A272067 The sum of the digits of a(n) is divisible by 18. For example, 9^4 = 6561 and 6 + 5 + 6 + 1 = 18 * 1. %C A272067 Number of 9 in a(n) is 2*n-2 for n > 0. - _Seiichi Manyama_, Sep 18 2018 %H A272067 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11111,-11222110,1122211000,-11111000000,10000000000). %F A272067 a(n) = A059988(n)^2 = A002283(n)^4. %F A272067 From _Ilya Gutkovskiy_, Apr 19 2016: (Start) %F A272067 O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)). %F A272067 E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End) %e A272067 From _Seiichi Manyama_, Sep 18 2018: (Start) %e A272067 n| a(n) can be divided into 4 parts for n > 1. %e A272067 -+-------------------------------------------- %e A272067 1| 65 61 %e A272067 2| 9 605 9 601 %e A272067 3| 99 6005 99 6001 %e A272067 4| 999 60005 999 60001 %e A272067 (End) %p A272067 A272067:=n->(10^n-1)^4: seq(A272067(n), n=0..15); # _Wesley Ivan Hurt_, Apr 19 2016 %t A272067 (10^Range[0, 10] - 1)^4 (* _Wesley Ivan Hurt_, Apr 19 2016 *) %o A272067 (Ruby) %o A272067 (0..n).each{|i| p ('9' * i).to_i ** 4} %o A272067 (PARI) a(n) = (10^n-1)^4; \\ _Michel Marcus_, Apr 19 2016 %o A272067 (Magma) [(10^n-1)^4 : n in [0..10]]; // _Wesley Ivan Hurt_, Apr 19 2016 %Y A272067 Cf. A002283, A059988, A272066, A272068, A319358. %K A272067 nonn,easy %O A272067 0,2 %A A272067 _Seiichi Manyama_, Apr 19 2016