This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272068 #34 Mar 30 2025 10:34:28 %S A272068 0,59049,9509900499,995009990004999,99950009999000049999, %T A272068 9999500009999900000499999,999995000009999990000004999999, %U A272068 99999950000009999999000000049999999,9999999500000009999999900000000499999999,999999995000000009999999990000000004999999999,99999999950000000009999999999000000000049999999999 %N A272068 a(n) = (10^n-1)^5. %C A272068 The sum of the digits of a(n) is divisible by 27. For example, 9^5 = 59049 and 5 + 9 + 0 + 4 + 9 = 27 * 1. %C A272068 Number of 9 in a(n) is 3*n-1 for n > 0. - _Seiichi Manyama_, Sep 18 2018 %H A272068 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (111111,-1122322110,1123333211000,-112232211000000,1111110000000000,-1000000000000000). %F A272068 a(n) = A002283(n)^5. %F A272068 From _Ilya Gutkovskiy_, Apr 19 2016: (Start) %F A272068 O.g.f.: 59049*x*(1 + 49940*x + 78366000*x^2 + 4994000000*x^3 + 10000000000*x^4)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)*(1 - 100000*x)). %F A272068 E.g.f.: -exp(x) + 5*exp(10*x) - 10*exp(100*x) + 10*exp(1000*x) - 5*exp(10000*x) + exp(100000*x). (End) %e A272068 From _Seiichi Manyama_, Sep 18 2018: (Start) %e A272068 n| a(n) can be divided into 5 parts for n > 1. %e A272068 -+-------------------------------------------- %e A272068 1| 5 9 04 9 %e A272068 2| 9 50 99 004 99 %e A272068 3| 99 500 999 0004 999 %e A272068 4| 999 5000 9999 00004 9999 %e A272068 (End) %p A272068 A272068:=n->(10^n-1)^5: seq(A272068(n), n=0..10); # _Wesley Ivan Hurt_, Apr 19 2016 %t A272068 (10^Range[0, 10] - 1)^5 (* _Wesley Ivan Hurt_, Apr 19 2016 *) %o A272068 (Ruby) %o A272068 (0..n).each{|i| p ('9' * i).to_i ** 5} %o A272068 (PARI) a(n) = (10^n-1)^5; \\ _Michel Marcus_, Apr 19 2016 %o A272068 (Magma) [(10^n-1)^5 : n in [0..10]]; // _Wesley Ivan Hurt_, Apr 19 2016 %Y A272068 Cf. A002283, A059988, A272066, A272067, A319358. %K A272068 nonn,easy %O A272068 0,2 %A A272068 _Seiichi Manyama_, Apr 19 2016