cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.

This page as a plain text file.
%I A272097 #14 Jan 16 2017 12:26:30
%S A272097 1,0,0,2,6,8,7,9,1,3,2,4,1,5,2,7,9,4,1,5,8,4,3,4,5,5,4,6,4,3,4,5,2,0,
%T A272097 9,6,1,8,1,8,1,0,4,0,3,1,9,2,3,6,7,8,8,8,3,7,2,8,6,6,5,6,7,3,8,0,6,4,
%U A272097 7,7,8,5,0,6,2,1,1,1,0,0,7,3,8,5,3,8,1,0,9,5,8,8,6,6,7,8,2,6,3,5,8,8,0,1,9
%N A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.
%C A272097 Product_{k=1..n} (k! / (sqrt(2*Pi*k) * k^k * exp(-k))) ~ c * n^(1/12), where c = exp(1/12)*(2*Pi)^(1/4) / A^2 = A213080 = 1.04633506677050318098095065697776..., where A = A074962 is the Glaisher-Kinkelin constant.
%C A272097 Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n) + 1/(288*n^2)))) = exp(1/12) * (2*Pi)^(1/4) * abs(Gamma(25/24 + i/24))^2 / A^2 = 0.997305599490607358564533726617761207426462854447669845..., where A = A074962 is the Glaisher-Kinkelin constant and i is the imaginary unit.
%H A272097 G. C. Greubel, <a href="/A272097/b272097.txt">Table of n, a(n) for n = 1..5000</a>
%F A272097 Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n)))).
%F A272097 Equals exp(1/12) * (2*Pi)^(1/4) * Gamma(1/12) / (12 * A^2), where A = A074962 is the Glaisher-Kinkelin constant.
%e A272097 1.00268791324152794158434554643452096181810403192367888372866567380647785...
%t A272097 Product[n!/(n^n/E^n*Sqrt[2*Pi*n]*(1 + 1/(12*n))), {n, 1, Infinity}]
%t A272097 RealDigits[E^(1/12)*(2*Pi)^(1/4)*Gamma[13/12]/Glaisher^2, 10, 120][[1]]
%Y A272097 Cf. A000142, A001163, A001164, A074962, A203138, A203140, A213080, A241140.
%K A272097 nonn,cons
%O A272097 1,4
%A A272097 _Vaclav Kotesovec_, Apr 20 2016