cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272099 Triangle read by rows, T(n,k) = C(n+1,k+1)*F([k-n, k-n-1], [-n-1], -1), where F is the generalized hypergeometric function, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 4, 1, 12, 5, 1, 32, 18, 6, 1, 80, 56, 25, 7, 1, 192, 160, 88, 33, 8, 1, 448, 432, 280, 129, 42, 9, 1, 1024, 1120, 832, 450, 180, 52, 10, 1, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1
Offset: 0

Views

Author

Peter Luschny, Apr 25 2016

Keywords

Comments

This triangle results when the first column is removed from A210038. - Georg Fischer, Jul 26 2023

Examples

			Triangle starts:
1;
4,    1;
12,   5,    1;
32,   18,   6,   1;
80,   56,   25,  7,   1;
192,  160,  88,  33,  8,   1;
448,  432,  280, 129, 42,  9,  1;
1024, 1120, 832, 450, 180, 52, 10, 1;
		

Crossrefs

A258109 (row sums), A008466 (alternating row sums), A001787 (col. 0), A001793 (col. 1), A055585 (col. 2).
Cf. A210038.

Programs

  • Maple
    T := (n,k) -> binomial(n+1,k+1)*hypergeom([k-n, k-n-1], [-n-1], -1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n+1, k+1] HypergeometricPFQ[{k-n, k-n-1}, {-n-1}, -1];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2019 *)