This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272101 #21 Nov 02 2022 07:43:07 %S A272101 1,4,2,6,4,2,6,2,2,2,2,2,2,6,10,4,4,16,2,12,4,18,2,4,6,2,2,12,2,4,2,2, %T A272101 2,24,10,2,8,2,2,8,12,2,16,2,6,2,2,30,4,2,4,8,2,2,4,2,6,2,6,2,24,20,2, %U A272101 4,6,36,2,6,4,6 %N A272101 Square root of largest square dividing A069482(n). %C A272101 Analogous to A001223 with 2-norm. %C A272101 a(n) is the square root of the square part of A069482(n). %F A272101 Conjectures: (Start) %F A272101 a(A068361(n)) = A001223(A068361(n)). %F A272101 a(A068361(n)) = 2 for n>1. %F A272101 These are the only a(n)=A001223(n). %F A272101 (End) %F A272101 a(n) = A000188(A069482(n)). - _Michel Marcus_, Apr 27 2016 %e A272101 sqrt(5)=1*sqrt(5), a(n)=1. %e A272101 sqrt(16)=4*sqrt(1), a(n)=4. %e A272101 sqrt(24)=2*sqrt(6), a(n)=2. %t A272101 Table[Sqrt[Prime[n+1]^2-Prime[n]^2],{n,1,100}]/.Sqrt[_]->1 %o A272101 (PARI) a(n) = my(d=prime(n+1)^2 - prime(n)^2); sqrtint(d/core(d)); \\ _Michel Marcus_, Apr 27 2016 %Y A272101 Cf. A000188, A069482 %Y A272101 Cf. A001223, A068361. %K A272101 nonn %O A272101 1,2 %A A272101 _Benedict W. J. Irwin_, Apr 20 2016