cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272102 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the first kind.

This page as a plain text file.
%I A272102 #37 Apr 29 2016 17:06:59
%S A272102 1,0,1,0,-4,9,0,16,-180,225,0,-64,3024,-12600,11025,0,256,-48960,
%T A272102 529200,-1323000,893025,0,-1024,785664,-20275200,110602800,-196465500,
%U A272102 108056025,0,4096,-12579840,749548800,-8072064000,28605376800,-39332393100,18261468225
%N A272102 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the first kind.
%C A272102 Table has only rows for odd h because all coefficients for even h are zero:
%C A272102 ===|==========================================================================
%C A272102 h\s| 0      1         2            3            4              5             6
%C A272102 ---|--------------------------------------------------------------------------
%C A272102 1  | 1
%C A272102 3  | 0      1
%C A272102 5  | 0     -4         9
%C A272102 7  | 0     16      -180          225
%C A272102 9  | 0    -64      3024       -12600        11025
%C A272102 11 | 0    256    -48960       529200     -1323000         893025
%C A272102 13 | 0  -1024    785664    -20275200    110602800     -196465500     108056025
%C A272102 15 | 0   4096 -12579840    749548800  -8072064000    28605376800   39332393100
%C A272102 17 | 0 -16384 201314304 -27298252800 553339987200 -3514374864000 9125115199200
%C A272102 ...
%C A272102 Conjecture:
%C A272102 If t(h,s) is any term of the previous table after the first column (s>0), then:
%C A272102 t(h,s) = -( (2*s)^2*t(h-2,s) - (2*s-1)^2*t(h-2,s-1) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1. Some example:
%C A272102 t(11,3) = -((2*3)^2*t(9,5) - (2*3-1)^2*t(9,2)) = -(36*(-12600) - 25*3024) = 529200;
%C A272102 t(17,5) = -((2*5)^2*t(15,5) - (2*5-1)^2*t(15,4)) = -(100*(28605376800) - 81*(-8072064000)) = -351437486400.
%C A272102 Also:
%C A272102 t(h,1) = (-1)^(h/2+1/2)*A000302(h/2-3/2) for h>1;
%C A272102 t(h,2) = (-1)^(h/2-1/2)*(16*t(h-2,2)+9*2^(h-5)) for h>3.
%H A272102 Francesco Franco, <a href="/A272102/b272102.txt">Rows n = 1..14 of triangle, flattened</a>
%F A272102 F(m,phi) = Int_{theta=0..phi} 1/sqrt(1-m*sin^2 theta) d theta.
%F A272102 F(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a((n-1)/2,s) * m^s)*phi^n/n!.
%e A272102 F(m,phi) = phi + m*phi^3/3! + (-4*m+9*m^2)*phi^5/5! + (16*m-180*m^2+225*m^3)*phi^7/7! + (-64*m+3024*m^2-12600*m^3+11025*m^4)*phi^9/9! + ...
%e A272102 so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
%e A272102 the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
%p A272102 an := proc(m, n, s) local f: f := coeftayl(EllipticF(sin(phi), m^(1/2)), phi=0, n); coeftayl(f*n!, m=0, s) ; end: nmax := 28 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d, ", an(m, n, s)) ; od ; od;
%t A272102 a[1, 0] = 1; a[n_, s_] := SeriesCoefficient[EllipticF[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten
%Y A272102 Cf. A120362.
%K A272102 sign,tabl
%O A272102 1,5
%A A272102 _Francesco Franco_, Apr 23 2016
%E A272102 Missing 0 added by _Bruno Berselli_, Apr 29 2016