This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272102 #37 Apr 29 2016 17:06:59 %S A272102 1,0,1,0,-4,9,0,16,-180,225,0,-64,3024,-12600,11025,0,256,-48960, %T A272102 529200,-1323000,893025,0,-1024,785664,-20275200,110602800,-196465500, %U A272102 108056025,0,4096,-12579840,749548800,-8072064000,28605376800,-39332393100,18261468225 %N A272102 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the first kind. %C A272102 Table has only rows for odd h because all coefficients for even h are zero: %C A272102 ===|========================================================================== %C A272102 h\s| 0 1 2 3 4 5 6 %C A272102 ---|-------------------------------------------------------------------------- %C A272102 1 | 1 %C A272102 3 | 0 1 %C A272102 5 | 0 -4 9 %C A272102 7 | 0 16 -180 225 %C A272102 9 | 0 -64 3024 -12600 11025 %C A272102 11 | 0 256 -48960 529200 -1323000 893025 %C A272102 13 | 0 -1024 785664 -20275200 110602800 -196465500 108056025 %C A272102 15 | 0 4096 -12579840 749548800 -8072064000 28605376800 39332393100 %C A272102 17 | 0 -16384 201314304 -27298252800 553339987200 -3514374864000 9125115199200 %C A272102 ... %C A272102 Conjecture: %C A272102 If t(h,s) is any term of the previous table after the first column (s>0), then: %C A272102 t(h,s) = -( (2*s)^2*t(h-2,s) - (2*s-1)^2*t(h-2,s-1) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1. Some example: %C A272102 t(11,3) = -((2*3)^2*t(9,5) - (2*3-1)^2*t(9,2)) = -(36*(-12600) - 25*3024) = 529200; %C A272102 t(17,5) = -((2*5)^2*t(15,5) - (2*5-1)^2*t(15,4)) = -(100*(28605376800) - 81*(-8072064000)) = -351437486400. %C A272102 Also: %C A272102 t(h,1) = (-1)^(h/2+1/2)*A000302(h/2-3/2) for h>1; %C A272102 t(h,2) = (-1)^(h/2-1/2)*(16*t(h-2,2)+9*2^(h-5)) for h>3. %H A272102 Francesco Franco, <a href="/A272102/b272102.txt">Rows n = 1..14 of triangle, flattened</a> %F A272102 F(m,phi) = Int_{theta=0..phi} 1/sqrt(1-m*sin^2 theta) d theta. %F A272102 F(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a((n-1)/2,s) * m^s)*phi^n/n!. %e A272102 F(m,phi) = phi + m*phi^3/3! + (-4*m+9*m^2)*phi^5/5! + (16*m-180*m^2+225*m^3)*phi^7/7! + (-64*m+3024*m^2-12600*m^3+11025*m^4)*phi^9/9! + ... %e A272102 so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi, %e A272102 the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!. %p A272102 an := proc(m, n, s) local f: f := coeftayl(EllipticF(sin(phi), m^(1/2)), phi=0, n); coeftayl(f*n!, m=0, s) ; end: nmax := 28 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d, ", an(m, n, s)) ; od ; od; %t A272102 a[1, 0] = 1; a[n_, s_] := SeriesCoefficient[EllipticF[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten %Y A272102 Cf. A120362. %K A272102 sign,tabl %O A272102 1,5 %A A272102 _Francesco Franco_, Apr 23 2016 %E A272102 Missing 0 added by _Bruno Berselli_, Apr 29 2016