cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272104 Sum of the even numbers among the larger parts of the partitions of n into two parts.

This page as a plain text file.
%I A272104 #48 Apr 30 2025 14:53:21
%S A272104 0,0,0,2,2,4,4,10,10,14,14,24,24,30,30,44,44,52,52,70,70,80,80,102,
%T A272104 102,114,114,140,140,154,154,184,184,200,200,234,234,252,252,290,290,
%U A272104 310,310,352,352,374,374,420,420,444,444,494,494,520,520,574,574,602
%N A272104 Sum of the even numbers among the larger parts of the partitions of n into two parts.
%C A272104 Essentially, repeated values of A152749.
%C A272104 Sum of the lengths of the distinct rectangles with even length and integer width such that L + W = n, W <= L. For example, a(10) = 14; the rectangles are 2 X 8 and 4 X 6, so 8 + 6 = 14. - _Wesley Ivan Hurt_, Nov 04 2017
%H A272104 Colin Barker, <a href="/A272104/b272104.txt">Table of n, a(n) for n = 0..1000</a>
%H A272104 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A272104 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2,0,0,-1,1).
%F A272104 a(n) = (1 + 3*(2n-3-(-1)^n)/2 + 3*(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8.
%F A272104 a(n) = Sum_{i=ceiling(n/2)..n-1} i * (i+1 mod 2).
%F A272104 a(n) = Sum_{i=1..floor(n/2)} (n-i) * (n-i+1 mod 2).
%F A272104 a(2n+1) = a(2n+2) = A152749(n) = 2*A001318(n).
%F A272104 G.f.: 2*x^3*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x)^2*(1+x^2)^2). - _Colin Barker_, Apr 20 2016
%F A272104 From _Wesley Ivan Hurt_, Apr 22 2016, Apr 23 2016: (Start)
%F A272104 a(2n+2)-a(2n) = A109043(n) = 2*A026741(n).
%F A272104 a(4n) = A049450(n) = 2*A000326(n),
%F A272104 a(8n) = A126964(n) = 2*A049452(n),
%F A272104 a(12n) = 2*A268351(n).
%F A272104 a(n+1) = A001318(n) - A272212(n+1). (End)
%F A272104 E.g.f.: ((2 + 3*x*(1 + x))*cosh(x) - 2*(cos(x) + x*cos(x) + x*sin(x)) + (-1 + 3*(-1 + x)*x)*sinh(x))/16. - _Ilya Gutkovskiy_, Apr 29 2016
%e A272104 a(5) = 4; the partitions of 5 into 2 parts are (4,1),(3,2) and the sum of the larger even parts is 4.
%e A272104 a(6) = 4; the partitions of 6 into 2 parts are (5,1),(4,2),(3,3) and the sum of the larger even parts is also 4.
%p A272104 A272104:=n->(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4)/2)/8: seq(A272104(n), n=0..100);
%t A272104 Table[(1 + 3(2n-3-(-1)^n)/2 + 3(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8, {n, 0, 50}]
%t A272104 Table[Total@ Map[First, IntegerPartitions[n, {2}] /. {k_, _} /; OddQ@ k -> Nothing], {n, 0, 57}] (* _Michael De Vlieger_, Apr 20 2016, Version 10.2 *)
%o A272104 (Magma) [(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4)/2)/8 : n in [0..50]];
%o A272104 (PARI) concat(vector(3), Vec(2*x^3*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)^2) + O(x^50))) \\ _Colin Barker_, Apr 20 2016
%Y A272104 Cf. A000326, A001318, A026741, A049450, A049452, A109043, A126964, A152749, A268351, A272212.
%K A272104 nonn,easy
%O A272104 0,4
%A A272104 _Wesley Ivan Hurt_, Apr 20 2016