cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272121 Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).

This page as a plain text file.
%I A272121 #37 May 01 2025 08:29:26
%S A272121 1,1,2,1,1,3,2,1,2,1,4,2,1,1,5,4,1,2,1,3,1,0,6,3,2,2,1,7,6,1,2,1,4,2,
%T A272121 1,8,4,2,1,1,3,2,9,6,4,1,2,1,5,3,2,10,5,2,0,1,11,10,1,2,1,3,1,0,4,1,0,
%U A272121 0,6,2,1,1,1,12,6,4,3,2,1,1,13,12,1,2,1,7,5,4,14,7,2,2,1,3,2,5,2,0,15,10,8,8
%N A272121 Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).
%C A272121 This is an irregular tetrahedron T(n,j,k) in which the slice n lists the elements of the j-th antidiagonal of the absolute difference triangle of the divisors of n.
%C A272121 The first row of the slice n is also the n-th row of the triangle A027750.
%C A272121 The bottom entry of the slice n is A187203(n).
%C A272121 The number of elements in the n-th slice is A000217(A000005(n)) = A184389(n).
%C A272121 The sum of the elements of the n-th slice is A187215(n).
%C A272121 If n is a power of 2 the antidiagonals are also the divisors of the powers of 2 from 1 to n in decreasing order, for example if n = 8 the finite sequence of antidiagonals is [1], [2, 1], [4, 2, 1], [8, 4, 2, 1].
%C A272121 First differs from A273135 at a(92).
%C A272121 Note that this sequence is not the absolute values of A273135. For example a(135) = 0 and A273135(135) = 4.
%e A272121 The tables of the first nine positive integers are
%e A272121   1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
%e A272121      1;    2;    1, 2;    4;    1, 1, 3;    6;    1, 2, 4;    2, 6;
%e A272121                  1;             0, 2;             1, 2;       4;
%e A272121                                 2;                1;
%e A272121 For n = 18 the absolute difference table of the divisors of 18 is
%e A272121   1, 2, 3, 6, 9, 18;
%e A272121   1, 1, 3, 3, 9;
%e A272121   0, 2, 0, 6;
%e A272121   2, 2, 6;
%e A272121   0, 4;
%e A272121   4;
%e A272121 This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, 2, 0], [18, 9, 6, 6, 4, 4].
%t A272121 Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* _Michael De Vlieger_, Jun 26 2016 *)
%Y A272121 Cf. A000005, A000217, A027750, A184389, A187203, A187215, A273104, A273132, A273135.
%K A272121 nonn,tabf
%O A272121 1,3
%A A272121 _Omar E. Pol_, May 18 2016