This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272134 #27 Sep 08 2022 08:46:16 %S A272134 0,4,68,282,736,1520,2724,4438,6752,9756,13540,18194,23808,30472, %T A272134 38276,47310,57664,69428,82692,97546,114080,132384,152548,174662, %U A272134 198816,225100,253604,284418,317632,353336,391620,432574,476288,522852,572356,624890,680544 %N A272134 a(n) = n*(15*n^2 - 15*n + 4). %H A272134 Vincenzo Librandi, <a href="/A272134/b272134.txt">Table of n, a(n) for n = 0..1000</a> %H A272134 Richard P. Brent, <a href="http://arxiv.org/abs/1407.3533">Generalising Tuenter's binomial sums</a>, arXiv:1407.3533 [math.CO], 2014. (page 16) %H A272134 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A272134 O.g.f.: 2*x*(2 + 26*x + 17*x^2)/(1-x)^4. %F A272134 E.g.f.: x*(4 + 30*x + 15*x^2)*exp(x). %F A272134 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3. %F A272134 See page 7 in Brent's paper: %F A272134 a(n) = 2*n^2*A049450(n) - n*(2*n-1)*A049450(n-1). %F A272134 A272357(n) = 2*n^2*a(n) - n*(2*n-1)*a(n-1). %t A272134 Table[n (15 n^2 - 15 n + 4), {n, 0, 40}] %o A272134 (Magma) [n*(15*n^2-15*n+4): n in [0..40]]; %o A272134 (PARI) vector(100, n, n--; n*(15*n^2 - 15*n + 4)) \\ _Altug Alkan_, Apr 28 2016 %o A272134 (Python) for n in range(0,10**3):print(n*(15*n**2-15*n+4),end=", ") # _Soumil Mandal_, Apr 30 2016 %Y A272134 Cf. A049450, A272357. %K A272134 nonn,easy %O A272134 0,2 %A A272134 _Vincenzo Librandi_, Apr 27 2016