This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272138 #25 Apr 29 2016 09:29:00 %S A272138 18,54,342,558,774,1026,1206,1674,1962,2322,2826,2934,3006,3474,3618, %T A272138 3798,4014,4086,4122,4842,5706,5886,6282,6354,6498,6894,7002,7362, %U A272138 7578,7794,7902,8082,8226,8334,8478,8766,8982,9018,9378,9414,9846,10134,10278,10422,10602,10782 %N A272138 Numbers n such that Bernoulli number B_{n} has denominator 798. %C A272138 798 = 2 * 3 * 7 * 19. %C A272138 All terms are multiple of a(1) = 18. %C A272138 For these numbers numerator(B_{n}) mod denominator(B_{n}) = 775. %H A272138 Seiichi Manyama, <a href="/A272138/b272138.txt">Table of n, a(n) for n = 1..1000</a> %e A272138 Bernoulli B_{18} is 43867/798, hence 18 is in the sequence. %p A272138 with(numtheory): P:=proc(q,h) local n; for n from 2 by 2 to q do %p A272138 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,798); %t A272138 Select[Range[0, 1000], Denominator[BernoulliB[#]] == 798 &] (* _Robert Price_, Apr 21 2016 *) %o A272138 (PARI) lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 798, print1(n, ", "))); \\ _Altug Alkan_, Apr 22 2016 %Y A272138 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272139, A272140, A272183, A272184, A272185, A272186. %K A272138 nonn,easy %O A272138 1,1 %A A272138 _Paolo P. Lava_, Apr 21 2016 %E A272138 More terms from _Altug Alkan_, Apr 22 2016