cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272141 Numbers such that the concatenation of their aliquot parts, in ascending order, are prime numbers.

This page as a plain text file.
%I A272141 #8 Apr 22 2016 23:48:38
%S A272141 9,14,21,26,27,34,35,46,49,55,57,58,62,74,98,115,118,143,155,158,161,
%T A272141 166,169,178,183,187,194,201,202,209,214,215,218,219,221,226,245,265,
%U A272141 279,287,295,298,309,314,323,326,327,329,335,341,355,371,374,377,381
%N A272141 Numbers such that the concatenation of their aliquot parts, in ascending order, are prime numbers.
%H A272141 Paolo P. Lava, <a href="/A272141/b272141.txt">Table of n, a(n) for n = 1..10000</a>
%e A272141 Aliquot parts of 9 are 1, 3 and concat(1,3) = 13 is prime;
%e A272141 aliquot parts of 3127 are 1, 53, 59 and concat(1,53,59) = 15359 is prime.
%p A272141 with(numtheory): P:= proc(q) local a,b,k,n;
%p A272141 for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
%p A272141 for k from 1 to nops(a)-1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od;
%p A272141 if isprime(b) then print(n); fi; od; end: P(10^9);
%t A272141 Select[Range@ 384, PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Most@ Divisors@ # &] (* _Michael De Vlieger_, Apr 21 2016 *)
%Y A272141 Cf. A176553, A272142.
%K A272141 nonn,base,easy
%O A272141 1,1
%A A272141 _Paolo P. Lava_, Apr 21 2016