cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272142 Numbers such that the concatenation of their aliquot parts, in descending order, are prime numbers.

This page as a plain text file.
%I A272142 #8 Apr 22 2016 23:48:46
%S A272142 8,9,10,26,34,35,49,55,56,57,62,63,75,76,77,94,95,115,122,125,142,144,
%T A272142 146,161,169,183,194,196,203,206,219,226,235,238,254,262,265,274,275,
%U A272142 278,290,299,302,304,305,309,320,322,332,336,338,346,355,358,361,362
%N A272142 Numbers such that the concatenation of their aliquot parts, in descending order, are prime numbers.
%H A272142 Paolo P. Lava, <a href="/A272142/b272142.txt">Table of n, a(n) for n = 1..10000</a>
%e A272142 Aliquot parts of 8 are 1, 2, 4 and concat(4,2,1) = 421 is prime;
%e A272142 aliquot parts of 1822 are 1, 2, 911 and concat(911,2,1) = 91121 is prime.
%p A272142 with(numtheory): P:= proc(q) local a,b,k,n;
%p A272142 for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
%p A272142 for k from nops(a)-1 by -1 to 1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od;
%p A272142 if isprime(b) then print(n); fi; od; end: P(10^9);
%t A272142 Select[Range@ 362, PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Reverse@ Most@ Divisors@ # &] (* _Michael De Vlieger_, Apr 21 2016 *)
%Y A272142 Cf. A176553, A272141.
%K A272142 nonn,base,easy
%O A272142 1,1
%A A272142 _Paolo P. Lava_, Apr 21 2016